Graphs and Genomes

Michael Schatz

Bioinformatics Lecture 3
Quantitative Biology 2014

Dynamic Programming Matrix

Compute the optimal alignment of ABC...XY..N and DEF...UV...M

	$\mathbf{0}$	\mathbf{A}	\mathbf{B}	\mathbf{C}	\ldots	\mathbf{X}	\mathbf{Y}	\ldots	\mathbf{N}
$\mathbf{0}$									
\mathbf{D}									
\mathbf{E}									
\mathbf{F}									
\ldots									
\mathbf{U}									
\mathbf{V}									
\ldots									
\mathbf{M}									

Dynamic Programming Matrix

Compute the optimal alignment of ABC...XY..N and DEF...UV...M

	$\mathbf{0}$	\mathbf{A}	\mathbf{B}	\mathbf{C}	\ldots	\mathbf{X}	\mathbf{Y}	\ldots	\mathbf{N}
$\mathbf{0}$	0	I	2	3		X	X+I		N
\mathbf{D}	$\mathbf{1}$								
\mathbf{E}	2								
\mathbf{F}	3								
\ldots									
\mathbf{U}	U								
\mathbf{V}	$\mathrm{U}+\mathbf{I}$								
\ldots									
\mathbf{M}	M								

Top row and first column are easy: it takes L-edits to transform and empty string into a length L string

Dynamic Programming Matrix

Compute the optimal alignment of "ABC...XY..N" and "DEF...UV...M"

	$\mathbf{0}$	\mathbf{A}	\mathbf{B}	\mathbf{C}	\ldots	\mathbf{X}	\mathbf{Y}	\ldots	\mathbf{N}
$\mathbf{0}$	0	\mathbf{I}	$\mathbf{2}$	3		X	$\mathrm{X}+\mathrm{I}$		\mathbf{N}
\mathbf{D}	$\mathbf{1}$								
\mathbf{E}	2								
\mathbf{F}	3								
\ldots									
\mathbf{U}	U					γ	α		
\mathbf{V}	$\mathrm{U}+\mathrm{I}$					β	Ω		
\ldots									
\mathbf{M}	\mathbf{M}								

$\Omega=\min \langle$	"Up" + 1	$\alpha+1$	Up	Left	Diagonal
	"Left+ + 1	$\beta+1$	ABC...XY-	ABC.... $\mathrm{X}_{\mathbf{Y}}$	ABC... $X \mathbf{Y}$
	"Diagonal" $+0 / \mathrm{l}$		DEF....UV	DEF...UV-	DEF...UV
				β	V

Graphs

- Nodes
- People, Proteins, Genes, Neurons, Sequences, Numbers, ...
- Edges
- A is connected to B
- A is related to B
- A regulates B
- A precedes B
- A interacts with B
- A activates B
- ...

Graph Types

Representing Graphs

| Adjacency Matrix
 Good for dense graphs
 Fast, Fixed storage: N bits | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |.

$$
\left.\right] \begin{array}{ll}
\text { A: C, D, E } & \text { D: F } \\
\text { B: D, E } & \text { E: F } \\
\text { C: F, G } & \text { G: }
\end{array}
$$

Edge List Easy, good if you (mostly) need to iterate through the edges 8 bytes / edge			
A, C	B, C		C,F
A, D	B,D		C,G
A, E	B,E		D,F
E,F	F,G		

Tools
Matlab: http://www.mathworks.com/
Graphviz: http://www.graphviz.org/ Gephi: https://gephi.org/
Cytoscape: http://www.cytoscape.org/
digraph G \{
A->B
$B->C$
A->C
\}
dot -Tpdf -og.pdf g.dot

Network Characteristics

	C. elegans	D. melanogaster	S. cerevisiae
\# Nodes	2646	7464	4965
\# Edges	4037	22831	17536
Avg. / Max Degree	3.0 / 187	6.1 / 178	7.0 / 283
\# Components	109	66	32
Largest Component	2386	7335	4906
Diameter	14	12	11
Avg. Shortest Path	4.8	4.4	4.1
Data Sources	2H	2x2H, TAP-MS	8x2H, 2xTAP, SUS
Degree Distributions			

Small World: Avg. Shortest Path between nodes is small
Scale Free: Power law distribution of degree - preferential attachment

Network Motifs

- Network Motif
- Simple graph of connections
- Exhaustively enumerate all possible I, 2, 3, ... k node motifs
- Statistical Significance
- Compare frequency of a particular network motif in a real network as compared to a randomized network
- Certain motifs are "characteristic features" of the network

Network Motifs: Simple Building Blocks of Complex Networks Milo et al (2002) Science. 298:824-827

Modularity

- Community structure
- Densely connected groups of vertices, with only sparser connections between groups
- Reveals the structure of large-scale network data sets
- Modularity
- The number of edges falling within groups minus the expected number in an
 equivalent network with edges placed at random
- Larger positive values => Stronger community structure
- Optimal assignment determined by computing the eigenvector of the modularity matrix

Modularity and community structure in networks.
Newman ME (2006) PNAS. I03(23) 8577-8582

> Normalization Adjacency
> factor

Random Prob. (product of degrees)

Kevin Bacon and Bipartite Graphs

Find the shortest path from
Kevin Bacon
to
Jason Lee

Breadth First Search:
4 hops
Bacon Distance:
2

[How many nodes will it visit?]
[What's the running time?]
[What happens for disconnected components?]

BFS	
BFS(start, stop) // initialize all nodes dist $=-$ I start.dist $=0$ list.addEnd(start)	$\underline{0}$
	A, B, C
while (!list.empty())	B,C,D,E
cur = list.begin()	
if (cur $==$ stop)	
else E,F,L,G,H,I	
foreach child in cur.children E,L,G,H,I,J	
if (child.dist $==-1$) L	
child.dist = cur.dist+1 \quad G, H, I, J, X, Olist. $a d d E n d$ (child)	
list.addEnd(child)	$\underline{H}, \mathrm{I}, \mathrm{J}, \mathrm{X}, \mathrm{O}$
	I,J,X,O,M
D:2)-(1:3	J,X,O,M
	$\underline{X}, \mathrm{O}, \mathrm{M}, \mathrm{N}$
	$\underline{\mathrm{O}}, \mathrm{M}, \mathrm{N}$
-B:D- $F: 2-8$	M, N
O:3	N

DFS

BFS and TSP

- BFS computes the shortest path between a pair of nodes in $\mathrm{O}(|\mathrm{E}|)=\mathrm{O}\left(|\mathrm{N}|^{2}\right)$
- What if we wanted to compute the shortest path visiting every node once?
- Traveling Salesman Problem

$$
\begin{aligned}
& \text { ABDCA: } 4+2+5+3=14 \\
& \text { ACDBA: } 3+5+2+4=14^{*} \\
& \text { ABCDA: } 4+1+5+1=11 \\
& \text { ADCBA: } 1+5+1+4=11 * \\
& \text { ACBDA: } 3+1+2+1=7 \\
& \text { ADBCA: } 1+2+1+3=7 *
\end{aligned}
$$

Greedy Search

Greedy Search

Greedy Search

cur=graph.randNode()
while (!done)

Greedy: \quad ABDCA $=5+8+10+50=73$
Optimal: $\mathrm{ACBDA}=5+11+10+12=38$

Greedy finds the global optimum only when
I. Greedy Choice: Local is correct without reconsideration
2. Optimal Substructure: Problem can be split into subproblems

Optimal Greedy: Making change with the fewest number of coins

TSP Complexity

- No fast solution
- Knowing optimal tour through n cities doesn't seem to help much for $n+1$ cities
[How many possible tours for n cities?]

- Extensive searching is the only provably correct algorithm
- Brute Force: O(n!)
- ~ 20 cities max
- $20!=2.4 \times 10^{18}$

Branch-and-Bound

- Abort on suboptimal solutions as soon as possible
- ADBECA $=1+2+2+2+3=10$
$-\mathrm{ABDE}=4+2+30>10$
- ADE $=1+30>10$
- AED $=1+30>10$

- Performance Heuristic
- Always gives the optimal answer
- Doesn't always help performance, but often does
- Current TSP record holder:
- 85,900 cities
[When not?]
- $85900!=10^{386526}$

TSP and NP-complete

- TSP is one of many extremely hard problems of the class NP-complete
- Extensive searching is the only way to find an exact solution
- Often have to settle for approx. solution

- WARNING: Many biological problems are in this class
- Find a tour the visits every node once (Genome Assembly)
- Find the smallest set of vertices covering the edges (Essential Genes)
- Find the largest clique in the graph (Protein Complexes)
- Find the highest mutual information encoding scheme (Neurobiology)
- Find the best set of moves in tetris
- ...
- http://en.wikipedia.org/wiki/List_of_NP-complete_problems

Break

What is your genome?

Like Dickens, we must computationally reconstruct a genome from short fragments

Sequencing a Genome

I. Shear \& Sequence DNA

2. Construct assembly graph from overlapping reads
...AGCCTAGGGATGCGCGACACGT
GGATGCGCGACACGTCGCATATCCGGTTTGGTCAACCTCGGACGGAC
CAACCTCGGACGGACCTCAGCGAA...
3. Simplify assembly graph

Assembly Complexity

Assembly Complexity

The advantages of SMRT sequencing
Roberts, RJ, Carneiro, MO, Schatz, MC (20I3) Genome Biology. 14:405

Milestones in Genome Assembly

1977. Sanger et al. ${ }^{\text {st }}$ Complete Organism 5375 bp

1995. Fleischmann et al. $\|^{\text {st }}$ Free Living Organism TIGR Assembler. I.8Mbp

1998. C.elegans SC $\left.\right|^{\text {st }}$ Multicellular Organism BAC-by-BAC Phrap. 97Mbp

2000. Myers et al.
${ }^{\text {st }}$ Large WGS Assembly. Celera Assembler. I 16 Mbp

200 I.Venter et al., IHGSC
Human Genome
Celera Assembler/GigaAssembler. 2.9 Gbp

2010. Li et al.
${ }^{\text {st }}$ Large SGS Assembly. SOAPdenovo 2.2 Gbp

Assembly Applications

- Novel genomes

- Metagenomes

- Sequencing assays
- Structural variations
- Transcript assembly

Ingredients for a good assembly

High coverage is required

- Oversample the genome to ensure every base is sequenced with long overlaps between reads
- Biased coverage will also fragment assembly

Reads \& mates must be longer than the repeats

- Short reads will have false overlaps forming hairball assembly graphs
- With long enough reads, assemble entire chromosomes into contigs

Quality

Errors obscure overlaps

- Reads are assembled by finding kmers shared in pair of reads
- High error rate requires very short seeds, increasing complexity and forming assembly hairballs

Current challenges in de novo plant genome sequencing and assembly Schatz MC,Witkowski, McCombie,WR (20I2) Genome Biology. I2:243

Typical sequencing coverage

Contig \quad Reads
Imagine raindrops on a sidewalk
We want to cover the entire sidewalk but each drop costs \$1

Ix sequencing

num bels
Balls in Bins
Total balls: 1000

$8 x$ sequencing

Poisson Distribution

The probability of a given number of events occurring in a fixed interval of time and/or space if these events occur with a known average rate and independently of the time since the last event.

Formulation comes from the limit of the binomial equation

Resembles a normal distribution, but over the positive values, and with only a single parameter.

Key property:

- The standard deviation is the square root of the mean.

$$
P(k)=\frac{\lambda^{k}}{k!} e^{-\lambda}
$$

de Bruijn Graph Construction

- $\mathrm{D}_{\mathrm{k}}=(\mathrm{V}, \mathrm{E})$
- $V=$ All length- k subfragments $(k<l)$
- $E=$ Directed edges between consecutive subfragments
- Nodes overlap by k-I words

Original Fragment

It was the best of

Directed Edge

- Locally constructed graph reveals the global sequence structure
- Overlaps between sequences implicitly computed
de Bruijn, 1946
Idury and Waterman, 1995
Pevzner, Tang, Waterman, 2001

de Bruijn Graph Assembly

Repetitive regions

Repeat Type	Definition / Example	Prevalence
Low-complexity DNA / Microsatellites	$\left(\mathrm{b}_{1} \mathrm{~b}_{2} \ldots \mathrm{~b}_{\mathrm{k}}\right)^{\mathrm{N}}$ where $\mathrm{I} \leq \mathrm{k} \leq 6$ CACACACACACACACACACA	2%
SINEs (Short Interspersed Nuclear Elements)	Alu sequence $(\sim 280 \mathrm{bp})$ Mariner elements $(\sim 80 \mathrm{bp})$	13%
LINEs (Long Interspersed Nuclear Elements)	$\sim 500-5,000 \mathrm{bp}$	21%
LTR (long terminal repeat) retrotransposons	Tyl-copia,Ty3-gypsy, Pao-BEL $(\sim 100-5,000 \mathrm{bp})$	8%
Other DNA transposons	3%	
Gene families \& segmental duplications		4%

- Over 50% of mammalian genomes are repetitive
- Large plant genomes tend to be even worse
- Wheat: 16 Gbp; Pine: 24 Gbp

Repeats and Coverage Statistics

- If n reads are a uniform random sample of the genome of length G, we expect $k=n \Delta / G$ reads to start in a region of length Δ.
- If we see many more reads than k (if the arrival rate is $>A$), it is likely to be a collapsed repeat

$$
\operatorname{Pr}(X-\text { copy })=\binom{n}{k}\left(\frac{X \Delta}{G}\right)^{k}\left(\frac{G-X \Delta}{G}\right)^{n-k} \quad A(\Delta, k)=\ln \left(\frac{\operatorname{Pr}(1-\text { cop } y)}{\operatorname{Pr}(2-\text { copy })}\right)=\ln \left(\frac{\frac{(\Delta n / G)^{k}}{k!} e^{\frac{-\Delta n}{G}}}{\frac{(2 \Delta n / G)^{k}}{k!} e^{\frac{-2 \Delta n}{G}}}\right)=\frac{n \Delta}{G}-k \ln 2
$$

The fragment assembly string graph
Myers, EW (2005) Bioinformatics. 21 (suppl 2): ii79-85.

Paired-end and Mate-pairs

Paired-end sequencing

- Read one end of the molecule, flip, and read the other end
- Generate pair of reads separated by up to 500bp with inward orientation 300bp

Mate-pair sequencing

- Circularize long molecules (I-IOkbp), shear into fragments, \& sequence
- Mate failures create short paired-end reads

10kbp

> 2x100 @~10kbp (outies)

2x100 @ 300bp (innies)

Scaffolding

- Initial contigs (aka unipaths, unitigs) terminate at
- Coverage gaps: especially extreme GC
- Conflicts: errors, repeat boundaries
- Use mate-pairs to resolve correct order through assembly graph
- Place sequence to satisfy the mate constraints
- Mates through repeat nodes are tangled
- Final scaffold may have internal gaps called
 sequencing gaps
- We know the order, orientation, and spacing, but just not the bases. Fill with Ns instead

N50 size

Def: 50% of the genome is in contigs as large as the N 50 value

Example: I Mbp genome 50%

N50 size $=30 \mathrm{kbp}$
$(300 k+100 k+45 k+45 k+30 k=520 k>=500 k b p)$
Note:
N50 values are only meaningful to compare when base genome size is the same in all cases

Whole Genome Alignment with MUMmer

Slides Courtesy of Adam M. Phillippy
University of Maryland

Goal of WGA

- For two genomes, A and B, find a mapping from each position in A to its corresponding position in B

Not so fast...

- Genome A may have insertions, deletions, translocations, inversions, duplications or SNPs with respect to B (sometimes all of the above)

WGA visualization

- How can we visualize whole genome alignments?
- With an alignment dot plot
$-N \times M$ matrix
- Let $i=$ position in genome A
- Let $j=$ position in genome B
- Fill cell ((i, j) if A_{i} shows similarity to B_{j}

- A perfect alignment between A and B would completely fill the positive diagonal

Alignment of 2 strains of Y. pestis
http://mummer.sourceforge.net/manual/

$3^{\text {rd }}$ Gen Long Read Sequencing

PacBio SMRT Sequencing

Imaging of fluorescently phospholinked labeled nucleotides as they are incorporated by a polymerase anchored to a Zero-Mode Waveguide (ZMW).

Time

SMRT Sequencing Data

Match	83.7%
Insertions	11.5%
Deletions	3.4%
Mismatch	1.4%

TTGTAAGCAGTTGAAAACTATGTGTGGATTTAGAATAAAGAACATGAAAG $|||\mid$ TTGTAAGCAGTTGAAAACTATGTGT-GATTTAG-ATAAAGAACATGGAAG

ATTATAAA-CAGTTGATCCATT-AGAAGA-AAACGCAAAAGGCGGCTAGG
 A-TATAAATCAGTTGATCCATTAAGAA-AGAAACGC-AAAGGC-GCTAGG

CAACCTTGAATGTAATCGCACTTGAAGAACAAGATTTTATTCCGCGCCCG
 C-ACCTTG-ATGT-AT--CACTTGAAGAACAAGATTTTATTCCGCGCCCG

TAACGAATCAAGATTCTGAAAACACAT-ATAACAACCTCCAAAA-CACAA
 T-ACGAATC-AGATTCTGAAAACA-ATGAT----ACCTCCAAAAGCACAA
-AGGAGGGGAAAGGGGGGAATATCT-ATAAAAGATTACAAATTAGA-TGA
 GAGGAGG---AA-ー---GAATATCTGAT-AAAGATTACAAATT-GAGTGA ACT-AATTCACAATA-AATAACACTTTTA-ACAGAATTGAT-GGAA-GTT
 АСТАААТТСАСАА-АТААТААСАСТТТTAGACAAAATTGATGGGAAGGTT TCGGAGAGATCCAAAACAATGGGC-ATCGCCTTTGA-GTTAC-AATCAAA
 TC-GAGAGATCC-AAACAAT-GGCGATCG-CTTTGACGTTACAAATCAAA ATCCAGTGGAAAATATAATTTATGCAATCCAGGAACTTATTCACAATTAG $|||||||||||||||||||||||||||||||||||||\mid$ ATCCAGT-GAAAATATA--TTATGC-ATCCA-GAACTTATTCACAATTAG

Sample of 100 k reads aligned with BLASR requiring $>100 \mathrm{bp}$ alignment

PacBio Assembly Algorithms

Gap Filling

 and Assembly UpgradeEnglish et al (2012)
PLOS One. 7(II): e47768

Hybrid/PB-only Error

 CorrectionKoren, Schatz, et al (2012)
Nature Biotechnology. 30:693-700

$<5 x$
PacBio Coverage
> 50x

S. cerevisiae W303

PacBio RS II sequencing at CSHL in the McCombie Lab

- Size selection using an 7 Kb elution window on a BluePippin ${ }^{\text {TM }}$ device from Sage Science

S. cerevisiae W303

S288C Reference sequence

- $12.1 \mathrm{Mbp} ; 16$ chromo + mitochondria; N50: 924kbp

PacBio assembly using HGAP + Celera Assembler

- $12.4 \mathrm{Mbp} ; 2 \mathrm{I}$ non-redundant contigs; $\mathrm{N} 50: 8 \mathrm{l} \mathrm{lkbp} ;>99.8 \%$ id

S. cerevisiae W303

S288C Reference sequence

- I2.1 Mbp; 16 chromo + mitochondria; N50: 924kbp

PacBio assembly using HGAP + Celera Assembler

- $12.4 \mathrm{Mbp} ; 2 \mathrm{I}$ non-redundant contigs; $\mathrm{N} 50: 8 \mathrm{llkbp} ; \mathbf{~} 99.8 \%$ id

PacBio ${ }^{\circledR}$ Advances in Read Length

Oxford Nanopore MinION

- Thumb drive sized sequencer powered over USB
- Capacity for 512 reads at once
- Senses DNA by measuring changes to ion flow

Nanopore Sequencing

Nanopore Basecalling

- Hidden Markov model
- Only four options per transition
- Pore type $=$ distinct kmer length

- Form probabilistic path through measured states currents and transitions
* e.g. Viterbi algorithm

Basecalling currently performed at Amazon with frequent updates to algorithm

Nanopore Alignments

Nanopore Accuracy

Alignment Quality (BLASTN)

Of reads that align, average $\sim 64 \%$ identity

Nanopore Accuracy

Alignment Quality (BLASTN)

Of reads that align, average $\sim 64 \%$ identity
" 2 D base-calling" improves to $\sim 70 \%$ identity

NanoCorr: Nanopore-Illumina Hybrid Error Correction

https://github.com/jgurtowski/nanocorr

I. BLAST Miseq reads to all raw Oxford Nanopore reads
2. Select non-repetitive alignments

- First pass scans to remove "contained" alignments
- Second pass uses Dynamic Programming (LIS) to select set of high-identity alignments with minimal overlaps

3. Compute consensus of each Oxford Nanopore read

- Currently using Pacbio's pbdagcon

Long Read Assembly

S288C Reference sequence

- I2.IMbp; 16 chromo + mitochondria
- Chromosome N50: 924kbp

Illumina MiSeq
 30x, 300bp PE (Flashed)

Celera Assembler

- 6953 non-redundant contigs
- N50: 59kb >99.9\% id

Oxford Nanopore
$30 x$ corrected reads $>6 \mathrm{~kb}$

NanoCorr + Celera Assembler

- 234 non-redundant contigs
- N50: 362kbp >99.78\% id

Pacific Biosciences
25x corrected reads > 10kb
HGAP + Celera Assembler

- 21 non-redundant contigs
- N50: 811kb >99.8\% id

Assembly Summary

Assembly quality depends on
I. Coverage: low coverage is mathematically hopeless
2. Repeat composition: high repeat content is challenging
3. Read length: longer reads help resolve repeats
4. Error rate: errors reduce coverage, obscure true overlaps

- Assembly is a hierarchical, starting from individual reads, build high confidence contigs/unitigs, incorporate the mates to build scaffolds
- Extensive error correction is the key to getting the best assembly possible from a given data set
- Watch out for collapsed repeats \& other misassemblies
- Globally/Locally reassemble data from scratch with better parameters \& stitch the 2 assemblies together

Thank You

http://schatzlab.cshl.edu/teaching/ @mike_schatz

