Graphs and Genomes Michael Schatz

Bioinformatics Lecture 3 Quantitative Biology 2014

Dynamic Programming Matrix

Compute the optimal alignment of ABC...XY..N and DEF...UV...M

	0	Α	В	С	•••	X	Y	•••	Ν
0									
D									
Ε									
F									
•••									
U									
V									
•••									
Μ									

Dynamic Programming Matrix

Compute the optimal alignment of ABC...XY..N and DEF...UV...M

	0	Α	В	С	•••	X	Y	•••	Ν
0	0	Ι	2	3		X	X+I		Ν
D	I								
Е	2								
F	3								
•••									
U	U								
V	U+I								
Μ	Μ								

Top row and first column are easy: it takes L-edits to transform and empty string into a length L string

Dynamic Programming Matrix

Compute the optimal alignment of "ABC...XY..N" and "DEF...UV...M"

	0	Α	В	С	•••	X	Y	•••	Ν
0	0	Ι	2	3		Х	X+I		Ν
D	I								
Е	2								
F	3								
•••									
U	U					γ	α		
V	U+I					β <	Ω		
•••									
Μ	Μ								

$$\Omega = \min \begin{cases} "Up" + I & \alpha + 1 & Up & Left & Diagonal \\ "Left + I & \beta + 1 & ABC \dots XY & ABC \dots XY & ABC \dots XY \\ "Diagonal" + 0/I & \gamma + 1 & DEF \dots UV & DEF \dots UV - DEF \dots UV \\ \alpha & \beta & \gamma \end{cases}$$

Biological Networks

Figure 5 Putative regulatory elements shared between groups of correlated and anticorrelated genes

- Nodes
 - People, Proteins, Genes, Neurons, Sequences, Numbers, ...
- Edges
 - A is connected to B
 - A is related to B
 - A regulates B
 - A precedes B
 - A interacts with B
 - A activates B

- ...

Graph Types

Representing Graphs

Tools Matlab: http://www.mathworks.com/ Graphviz: http://www.graphviz.org/ Gephi: https://gephi.org/ Cytoscape: http://www.cytoscape.org/ digraph G { $A \rightarrow B$ B->C A->C

Network Characteristics

	C. elegans	D. melanogaster	S. cerevisiae
# Nodes	2646	7464	4965
# Edges	4037	22831	17536
Avg. / Max Degree	3.0 / 187	6.1 / 178	7.0 / 283
# Components	109	66	32
Largest Component	2386	7335	4906
Diameter	14	12	11
Avg. Shortest Path	4.8	4.4	4.1
Data Sources	2H	2x2H, TAP-MS	8x2H, 2xTAP, SUS
Degree Distributions	and a second sec	Degree Degree	and a second sec

Small World: Avg. Shortest Path between nodes is small **Scale Free**: Power law distribution of degree – preferential attachment

Network Motifs

Network Motif

- Simple graph of connections
- Exhaustively enumerate all possible 1, 2, 3, ... k node motifs
- Statistical Significance
 - Compare frequency of a particular network motif in a real network as compared to a randomized network
- Certain motifs are "characteristic features" of the network

Network	Nodes	Edges	Nreal	N _{rand} ± SI	Z score	Nreid	$N_{\rm rund} \pm { m SD}$	Z score	Neral	N _{rand} ± S	D Z scott
Gene regular (transcriptio	dion a)		Γ	× ×	Feed- forward loop	N.	Ş.	Bi-fan			
E. colt 5. cerevisiae*	424	519 1,052	40 70	7±3	10 14	203 1812	47 ± 12 300 ± 40	13 41			
Nearons			Γ	× v v	Feed- forward foop		4	Hi-fan	× ×	K ^X	Bi- parallel
C eleganot	252	509	125	Z 90 ± 10	3.7	127	55 ± 13	53	227	¥ 35 ± 10	20
Food write				× ¥ ¥	Three chain	K, K,	"¥ ¥ ²	Bi- parallel			
Little Rock Ythan St. Martin Chesapeake Conchella	92 83 42 31	984 391 205 67 343	3219 1182 469 80 270	Z 3120 ± 50 3020 ± 20 450 ± 10 82 ± 4 335 ± 12	2.1 7.2 NS NS	7295 1357 362 25	2220 ± 210 230 ± 50 130 ± 20 5 ± 2 80 ± 20	25 23 12 8			
Skipwith	25	189	184	150 ± 7	5.5	397	80 ± 25	13			
Electronic cit (forward log)	rcuits e chips)		ļ	X Y Y Z	Feed- forward loop	× CH N	Å.	Bi-fan	K'K'	N X X	Bi- parallel
x15850 x38584 x38417 x9234 x13207	10,383 20,717 23,843 5,844 8,651	14,240 34,204 33,661 8,197 11,831	424 413 612 211 403	2 ± 2 10 ± 3 3 ± 2 2 ± 1 2 ± 1	285 120 400 140 225	1040 1739 2404 754 4445	1±1 6±2 1±1 1±1 1±1	1200 800 2550 1050 4950	480 711 531 209 264	2±1 9±2 2±2 1±1 2±1	335 320 340 200 200
Electronic ci (digital fract	iccuits iccuit mult	ipliers)	1	- x	Three- node feedback loop	x Qx	Å.	Ni-fan	x-	⇒r ↓ w	Four- node feedback boop
s208 s420 s838‡	122 252 512	189 399 819	10 20 40	1±1 1±1 1±1	9 18 38	4 10 22	1±1 1±1 1±1	3.8 10 20	5 11 23	1 ± 1 1 ± 1 1 ± 1	5 11 25
World Wide	Web			NONON	Feedback with two mutual dyads	N.	N ≯z	Fully connected triad	₹ ×	∧ > z	Uplinked mutual dyad
ndeduş	325,729	1.46e6	1.1e5	2e3 ± 1e2	800	6.8e6	5e454e2	15,000	1.2e6	1e4 ± 2a	2 5000

Network Motifs: Simple Building Blocks of Complex Networks Milo et al (2002) *Science*. 298:824-827

Modularity

- Community structure
 - Densely connected groups of vertices, with only sparser connections between groups
 - Reveals the structure of large-scale network data sets

- Modularity
 - The number of edges falling within groups minus the expected number in an equivalent network with edges placed at random
 - Larger positive values => Stronger community structure
 - Optimal assignment determined by computing the eigenvector of the modularity matrix

Modularity and community structure in networks. Newman ME (2006) *PNAS*. *103*(23) 8577-8582

Random Prob. (product of degrees)

Kevin Bacon and Bipartite Graphs

BFS

BFS(start, stop) // initialize all nodes dist = -1	<u>0</u>
<pre>start.dist = 0 list.addEnd(start) while (!list.empty()) cur = list.begin() if (cur == stop)</pre>	<u>A</u> ,B,C <u>B</u> ,C,D,E <u>C</u> ,D,E,F,L
<pre>in (cur == stop) print cur.dist; else foreach child in cur.children if (child.dist == -1) child.dist = cur.dist+1 list.addEnd(child)</pre>	D,E,F,L,G,H E,F,L,G,H,I,J F,L,G,H,I,J L,G,H,I,J,X G,H,I,J,X,O H,I,J,X,O
$\begin{array}{c} D.2 \\ \hline 1.3 \\ \hline A.1 \\ \hline E.2 \\ \hline J.3 \\ \hline N.4 \\ \hline B.1 \\ \hline F.2 \\ \hline x_3 \\ \hline C.1 \\ \hline G.2 \\ \hline L.2 \\ \hline O.3 \\ \hline H.2 \\ \hline M.3 \\ \end{array}$	I,J,X,O,M J,X,O,M X,O,M,N O,M,N M,N N

[How many nodes will it visit?]

[What's the running time?]

[What happens for disconnected components?]

BFS

<pre>// initialize all nodes dist = -1 start.dist = 0 list.addEnd(start) while (!list.empty()) cur = list.begin() if (cur == stop) print cur.dist; else foreach child in cur.children if (child.dist == -1) child.dist = cur.dist+1</pre>	e all nodes dist = -1 = 0 d(start) t.empty()) ist.begin() == stop) cur.dist; C, ch child in cur.children child.dist == -1) child.dist = cur.dist+1 ist.addEnd(child)	0
<pre>start.dist = 0 list.addEnd(start) while (!list.empty()) cur = list.begin() if (cur == stop) print cur.dist; else foreach child in cur.children if (child.dist == -1) child.dist = cur.dist+1</pre>	= 0 d(start) t.empty()) ist.begin() == stop) cur.dist; C ch child in cur.children child.dist == -1) child.dist = cur.dist+1 G H	<u>U</u>
<pre>list.addEnd(start) while (!list.empty()) cur = list.begin() if (cur == stop) print cur.dist; else foreach child in cur.children if (child.dist == -1) child.dist = cur.dist+1</pre>	d(start)A,t.empty())ist.begin()== stop)cur.dist;Cch child in cur.childrenchild.dist == -1)child.dist = cur.dist+1ist.addEnd(child)	۸
<pre>while (!list.empty()) cur = list.begin() if (cur == stop) print cur.dist; else foreach child in cur.children if (child.dist == -1) child.dist = cur.dist+1</pre>	t.empty()) ist.begin() == stop) cur.dist; ch child in cur.children child.dist == -1) child.dist = cur.dist+1 G H	<u>A</u> ,
<pre>cur = list.begin() if (cur == stop) print cur.dist; else foreach child in cur.children if (child.dist == -1) child.dist = cur.dist+1</pre>	ist.begin() == stop) cur.dist; ch child in cur.children child.dist == -1) child.dist = cur.dist+1 ist.addEnd(child)	<u>В</u> ,
<pre>if (cur == stop) print cur.dist; else foreach child in cur.children if (child.dist == -1) child.dist = cur.dist+1</pre>	== stop) cur.dist; ch child in cur.children child.dist == -1) child.dist = cur.dist+1 G H	
print cur.dist; else foreach child in cur.children if (child.dist == -1) child.dist = cur.dist+1	cur.dist;Dch child in cur.childrenE,child.dist == -1)L,child.dist = cur.dist+1Glist.addEnd(child)H,	
else foreach child in cur.children if (child.dist == -1) child.dist = cur.dist+1	ch child in cur.children E, child.dist == -1) child.dist = cur.dist+1 G ist.addEnd(child)	D
foreach child in cur.children if (child.dist == -1) child.dist = cur.dist+1	ch child in cur.children <u>F</u> , child.dist == -1) child.dist = cur.dist+1 G ist.addEnd(child)	<u>E</u> ,
if (child.dist == -1) child.dist = cur.dist+1	child.dist == -1) child.dist = cur.dist+1 G ist.addEnd(child)	F.
child dist = cur dist+1	child.dist = cur.dist+l ist.addEnd(child)	Ē
	list.addEnd(child)	<u>ב</u> י כ
list.addEnd(child)	· · · · <u>H</u> ,	
· · ·		<u>H</u>

<u>∪</u> <u>A</u>,B,C <u>B</u>,C,D,E <u>C</u>,D,E,F,L

<u>D</u>,E,F,L,G,H <u>E</u>,F,L,G,H,I <u>F</u>,L,G,H,I,J <u>L</u>,G,H,I,J,X <u>G</u>,H,I,J,X,O <u>H</u>,I,J,X,O

<u>I</u>,J,X,O,M <u>J</u>,X,O,M <u>X</u>,O,M,N <u>O</u>,M,N <u>M</u>,N

DFS

DFS(start, stop)
// initialize all nodes dist = -1
start.dist = 0
list.addEnd(start)
while (!list.empty())
 cur = list.end()
 if (cur == stop)
 print cur.dist;
 else
 foreach child in cur.children
 if (child.dist == -1)
 child.dist = cur.dist+1
 list.addEnd(child)

<u>0</u> A,B,<u>C</u> A,B,G,<u>H</u> A,B,G,<u>M</u> A,B,<u>G</u> A,B,<u>L</u> A,B,<u>O</u> A,B,<u>N</u> A,B,J A,B,E,<u>F</u> A,B,E,<u>K</u> A,B,<u>E</u> A,<u>B</u>

A D

BFS and **TSP**

- BFS computes the shortest path between a pair of nodes in $O(|E|) = O(|N|^2)$
- What if we wanted to compute the shortest path visiting every node once?
 - Traveling Salesman Problem

Greedy Search

Greedy Search

Greedy Search

cur=graph.randNode()
while (!done)
next=cur.getNextClosest()

Greedy: ABDCA = 5+8+10+50=73Optimal: ACBDA = 5+11+10+12=38

Greedy finds the global optimum only when

- I. Greedy Choice: Local is correct without reconsideration
- 2. Optimal Substructure: Problem can be split into subproblems

Optimal Greedy: Making change with the fewest number of coins

TSP Complexity

- No fast solution
 - Knowing optimal tour through n cities doesn't seem to help much for n+1 cities

[How many possible tours for n cities?]

- Extensive searching is the only provably correct algorithm
 - Brute Force: O(n!)
 - ~20 cities max
 - 20! = 2.4×10^{18}

Branch-and-Bound

- Abort on suboptimal solutions as soon as possible
 - ADBECA = 1+2+2+2+3 = 10
 - ABDE = 4+2+30 > 10
 - ADE = |+30 > |0|
 - AED = 1+30 > 10

— ...

- Performance Heuristic
 - Always gives the optimal answer
 - Doesn't always help performance, but often does
 - Current TSP record holder:
 - 85,900 cities
 - 85900! = 10^{386526}

[When not?]

TSP and NP-complete

- TSP is one of many extremely hard problems of the class NP-complete
 - Extensive searching is the only way to find an exact solution
 - Often have to settle for approx. solution

- WARNING: Many biological problems are in this class
 - Find a tour the visits every node once (Genome Assembly)
 - Find the smallest set of vertices covering the edges (Essential Genes)
 - Find the largest clique in the graph (Protein Complexes)
 - Find the highest mutual information encoding scheme (Neurobiology)
 - Find the best set of moves in tetris
 - ...
 - http://en.wikipedia.org/wiki/List_of_NP-complete_problems

Break

What is your genome?

Like Dickens, we must computationally reconstruct a genome from short fragments

Sequencing a Genome

2. Construct assembly graph from overlapping reads

3. Simplify assembly graph

Assembly Complexity

Assembly Complexity

The advantages of SMRT sequencing Roberts, RJ, Carneiro, MO, Schatz, MC (2013) *Genome Biology*. 14:405

Milestones in Genome Assembly

And the property of the	
articles	
Nucleotide sequence of b Φ X174 DNA	acteriophage
F. Sangoo, G. M. Air', R. G. Barroll, N. L. Brow C. A. Barthhines HP, P. M. Shoomber' & M. San HE (House), C. Brown Hong, NY, Ant. Contrag. 19	ef., A. R. Cushon, J. C. Foldes, 407 101 (*
ϕ distantes in the papers of hormating MAM of the second secon	which is the second sec

1977. Sanger et al. 1st Complete Organism 5375 bp

1995. Fleischmann *et al.* 1st Free Living Organism TIGR Assembler. 1.8Mbp

1998. C.elegans SC Ist Multicellular Organism BAC-by-BAC Phrap. 97Mbp

2000. Myers *et al.* Ist Large WGS Assembly. Celera Assembler. 116 Mbp

2001.Venter *et al.,* IHGSC Human Genome Celera Assembler/GigaAssembler. 2.9 Gbp

2010. Li *et al.* Ist Large SGS Assembly. SOAPdenovo 2.2 Gbp

Assembly Applications

Novel genomes

• Metagenomes

- Sequencing assays
 - Structural variations
 - Transcript assembly

Ingredients for a good assembly

High coverage is required

- Oversample the genome to ensure every base is sequenced with long overlaps between reads
- Biased coverage will also fragment assembly

Reads & mates must be longer than the repeats

- Short reads will have *false overlaps* forming hairball assembly graphs
- With long enough reads, assemble entire chromosomes into contigs

Errors obscure overlaps

- Reads are assembled by finding kmers shared in pair of reads
- High error rate requires very short seeds, increasing complexity and forming assembly hairballs

Current challenges in de novo plant genome sequencing and assembly Schatz MC, Witkowski, McCombie, WR (2012) *Genome Biology*. 12:243

Typical sequencing coverage

Imagine raindrops on a sidewalk

We want to cover the entire sidewalk but each drop costs \$1

Poisson Distribution

The probability of a given number of events occurring in a fixed interval of time and/or space if these events occur with a known average rate and independently of the time since the last event.

Formulation comes from the limit of the binomial equation

Resembles a normal distribution, but over the positive values, and with only a single parameter.

Key property:

• The standard deviation is the square root of the mean.

de Bruijn Graph Construction

- $D_k = (V, E)$
 - V = All length-k subfragments (k < l)
 - E = Directed edges between consecutive subfragments
 - Nodes overlap by k-1 words

- Locally constructed graph reveals the global sequence structure
 - Overlaps between sequences implicitly computed

de Bruijn, 1946 Idury and Waterman, 1995 Pevzner, Tang, Waterman, 2001

de Bruijn Graph Assembly

Repetitive regions

Repeat Type	Definition / Example	Prevalence
Low-complexity DNA / Microsatellites	$(b_1b_2b_k)^N$ where $I \le k \le 6$ CACACACACACACACACACACA	2%
SINEs (Short Interspersed Nuclear Elements)	<i>Alu</i> sequence (~280 bp) Mariner elements (~80 bp)	13%
LINEs (Long Interspersed Nuclear Elements)	~500 – 5,000 bp	21%
LTR (long terminal repeat) retrotransposons	Ту I -copia, Ту3-gypsy, Pao-BEL (~100 – 5,000 bp)	8%
Other DNA transposons		3%
Gene families & segmental duplications		4%

- Over 50% of mammalian genomes are repetitive
 - Large plant genomes tend to be even worse
 - Wheat: I6 Gbp; Pine: 24 Gbp

- If *n* reads are a uniform random sample of the genome of length *G*, we expect $k=n\Delta/G$ reads to start in a region of length Δ .
 - If we see many more reads than k (if the arrival rate is > A), it is likely to be a collapsed repeat

$$\Pr(X - copy) = \binom{n}{k} \left(\frac{X\Delta}{G}\right)^k \left(\frac{G - X\Delta}{G}\right)^{n-k} \qquad A(\Delta, k) = \ln\left(\frac{\Pr(1 - copy)}{\Pr(2 - copy)}\right) = \ln\left(\frac{\frac{(\Delta n/G)^k}{k!}e^{\frac{-\Delta n}{G}}}{\frac{(2\Delta n/G)^k}{k!}e^{\frac{-2\Delta n}{G}}}\right) = \frac{n\Delta}{G} - k\ln 2$$

The fragment assembly string graph Myers, EW (2005) Bioinformatics. 21 (suppl 2): ii79-85.

Paired-end and Mate-pairs

Paired-end sequencing

- Read one end of the molecule, flip, and read the other end
- Generate pair of reads separated by up to 500bp with inward orientation

Mate-pair sequencing

- Circularize long molecules (1-10kbp), shear into fragments, & sequence
- Mate failures create short paired-end reads

Scaffolding

- Initial contigs (aka unipaths, unitigs) terminate at
 - Coverage gaps: especially extreme GC
 - Conflicts: errors, repeat boundaries
- Use mate-pairs to resolve correct order through assembly graph
 - Place sequence to satisfy the mate constraints
 - Mates through repeat nodes are tangled
- Final scaffold may have internal gaps called sequencing gaps
 - We know the order, orientation, and spacing, but just not the bases. Fill with Ns instead

N50 size

Def: 50% of the genome is in contigs as large as the N50 value


```
N50 size = 30 \text{ kbp}
```

```
(300k+100k+45k+45k+30k = 520k \ge 500kbp)
```

Note:

N50 values are only meaningful to compare when base genome size is the same in all cases

Whole Genome Alignment with MUMmer

Slides Courtesy of Adam M. Phillippy University of Maryland

• For two genomes, A and B, find a mapping from each position in A to its corresponding position in B

Not so fast...

 Genome A may have insertions, deletions, translocations, inversions, duplications or SNPs with respect to B (sometimes all of the above)

WGA visualization

- How can we visualize *whole* genome alignments?
- With an alignment dot plot T $-N \times M$ matrix G• Let i = position in genome A• Let j = position in genome B• Fill cell (*i*,*j*) if A_i shows similarity to B_j A

 A perfect alignment between A and B would completely fill the positive diagonal

Alignment of 2 strains of Y. pestis http://mummer.sourceforge.net/manual/

3rd Gen Long Read Sequencing

PacBio SMRT Sequencing

Imaging of fluorescently phospholinked labeled nucleotides as they are incorporated by a polymerase anchored to a Zero-Mode Waveguide (ZMW).

Time

http://www.pacificbiosciences.com/assets/files/pacbio_technology_backgrounder.pdf

SMRT Sequencing Data

Match	83.7%
Insertions	11.5%
Deletions	3.4%
Mismatch	1.4%

TTGTAAGCAGTTGAAAACTATGTGT <mark>G</mark> GATTTAG <mark>A</mark> ATAAAGAACATG <mark>A</mark> AAG
ATTATAAA-CAGTTGATCCATT-AGAAGA-AAACGCAAAAGGCGGCTAGG
CAACCTTGAATGTAATCGCACTTGAAGAACAAGATTTTATTCCGCGCCCG
TAACGAATCAAGATTCTGAAAACACAT-ATAACAACCTCCAAAA-CACAA
-AGGAGG <mark>GGAAAGGGGGG</mark> GAATATCT-AT <mark>A</mark> AAAGATTACAAATT <mark>A</mark> GA-TGA
ACT-AATTCACAATA-AATAACACTTTTA-ACAGAATTGAT-GGAA-GTT
TCGGAGAGATCCAAAACAATGGGC-ATCGCCTTTGA-GTTAC-AATCAAA
ATCCAGT <mark>G</mark> GAAAATATA <mark>AT</mark> TTATGCAATCCA <mark>G</mark> GAACTTATTCACAATTAG

Sample of 100k reads aligned with BLASR requiring >100bp alignment

PacBio Assembly Algorithms

PacBioToCA

A Parties

PBJelly

Gap Filling and Assembly Upgrade

English et al (2012) PLOS One. 7(11): e47768

	/ -	
	1	7
		* ==
	CIID	CHO
	0	0
	1	/
	7	4
1		1000

Hybrid/PB-only Error Correction

Koren, Schatz, et al (2012) Nature Biotechnology. 30:693–700

PB-only Correction & Polishing

Chin et al (2013) Nature Methods. 10:563–569

< 5x

PacBio Coverage

S. cerevisiae W303

PacBio RS II sequencing at CSHL in the McCombie Lab

 Size selection using an 7 Kb elution window on a BluePippin[™] device from Sage Science

S. cerevisiae W303

S288C Reference sequence

• 12.1Mbp; 16 chromo + mitochondria; N50: 924kbp

PacBio assembly using HGAP + Celera Assembler

• 12.4Mbp; 21 non-redundant contigs; N50: 811kbp; >99.8% id

S. cerevisiae W303

S288C Reference sequence

• 12.1Mbp; 16 chromo + mitochondria; N50: 924kbp

PacBio assembly using HGAP + Celera Assembler

• 12.4Mbp; 21 non-redundant contigs; N50: 811kbp; >99.8% id

PacBio® Advances in Read Length

Oxford Nanopore MinION

- Thumb drive sized sequencer
 powered over USB
- Capacity for 512 reads at once
- Senses DNA by measuring changes to ion flow

Nanopore Sequencing

Nanopore Basecalling

- Hidden Markov model
- Only four options per transition
- Pore type = distinct kmer length

- Form probabilistic path through measured states currents and transitions
 - e.g. Viterbi algorithm

Basecalling currently performed at Amazon with frequent updates to algorithm

Nanopore Alignments

Mean: 6903bp

Alignment Quality (BLASTN) Of reads that align, average ~64% identity

Nanopore Accuracy

Alignment Quality (BLASTN)

Of reads that align, average ~64% identity "2D base-calling" improves to ~70% identity

NanoCorr: Nanopore-Illumina Hybrid Error Correction

https://github.com/jgurtowski/nanocorr

- I. BLAST Miseq reads to all raw Oxford Nanopore reads
- 2. Select non-repetitive alignments
 - First pass scans to remove "contained" alignments
 - Second pass uses Dynamic Programming (LIS) to select set of high-identity alignments with minimal overlaps
- 3. Compute consensus of each Oxford Nanopore read
 - Currently using Pacbio's pbdagcon

Long Read Assembly

S288C Reference sequence

- 12.1Mbp; 16 chromo + mitochondria
- Chromosome N50: 924kbp

Assembly Summary

Assembly quality depends on

- I. Coverage: low coverage is mathematically hopeless
- 2. Repeat composition: high repeat content is challenging
- 3. Read length: longer reads help resolve repeats
- 4. Error rate: errors reduce coverage, obscure true overlaps
- Assembly is a hierarchical, starting from individual reads, build high confidence contigs/unitigs, incorporate the mates to build scaffolds
 - Extensive error correction is the key to getting the best assembly possible from a given data set
- Watch out for collapsed repeats & other misassemblies
 - Globally/Locally reassemble data from scratch with better parameters & stitch the 2 assemblies together

Thank You

http://schatzlab.cshl.edu/teaching/ @mike_schatz